
Learning-Based Test Programming for
Programmers

Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto, Tim Bauer, and Amin
Alipour

School of Electrical Engineering and Computer Science
Oregon State University, Corvalis, OR

Abstract. While a diverse array of approaches to applying machine
learning to testing has appeared in recent years, many efforts share three
central challenges, two of which are not always obvious. First, learning-
based testing relies on adapting the tests generated to the program being
tested, based on the results of observed executions. This is the heart of
a machine learning approach to test generation. A less obvious challenge
in many approaches is that the learning techniques used may have been
devised for problems that do not share all the assumptions and goals
of software testing. Finally, the usability of approaches by programmers
is a challenge that has often been neglected. Programmers may wish
to maintain more control of test generation than a ”push button” tool
generally provides, without becoming experts in software testing theory
or machine learning algorithms, and with access to the full power of
the language in which the tested system is written. In this paper we
consider these issues, in light of our experience with adaptation-based
programming as a method for automated test generation.

1 Introduction

The combination of machine learning (ML) and software/hardware correctness
is now well-established as a fruitful intersection. In some cases, learning is used
to aid complete verification: in these approaches, the stochastic nature of most
machine learning is incidental. The learning is either by nature complete (e.g.,
using Angluin’s algorithm [1] to learn a bounded finite state machine [2–4]) or in-
tended to help produce an effective abstraction for model checking [5–7]1. While
the learning in some of these cases may not be guaranteed to reach a correct
answer, it is easy to determine if the current answer is satisfactory: namely, when
an abstraction produces either a proof of correctness or a valid counterexample,
the current learned hypothesis is in no need of further refinement. Addition-
ally, in these settings, the “user” for machine learning is a essentially a model
1 In some cases, abstraction learning uses SAT to solve for a “perfect” hypothesis

over current information, rather than a traditional ML algorithm; the approach is
nonetheless learning, as it features an inductive bias and may be modified in response
to future “training set” examples. The connection between CEGAR [8] and active
learning is intuitively clear.

checking algorithm; a human user of adaptive model checking or a learning-
assisted Counterexample Guided Abstraction Refinement (CEGAR) [8] system
need not even be aware that learning is taking place “underneath the hood”,
and is highly unlikely to have useful knowledge for improving the effectiveness
of learning. Moreover, because a “correct” answer can be mechanically checked,
there is typically no need for a user to assess the effectiveness of the learning
algorithm.

Another large body of recent work at the intersection of ML and system
reliability, however, has focused on learning to produce an effective test suite for a
program, whether by genetic/evolutionary techniques [9, 10] or by reinforcement
learning [11, 12]. In these cases, learning is obviously not expected to be complete
(there is no final, “correct” test suite), and evaluating the effectiveness of testing
techniques is notoriously difficult, since testing is typically applied to precisely
those systems where complete verification is not feasible, the set of all faults
for realistic systems is seldom if ever known, and coverage and other metrics of
test suite quality are of varied and difficult-to-predict effectiveness [13–16]. In
these cases, therefore, a human user often must assess the effectiveness of an
“answer” provided by an ML algorithm, without a general mechanical means for
evaluating its value. Moreover, even automated testing is usually much less of a
“black box” approach than model checking, and the user is likely to want to or
need to influence the choices made by a search or learning algorithm, or tune its
heuristics or reward structure.

Efforts where the machine learning is directed towards testing a program,
must therefore address a set of three potential core challenges:

1. First, learning-based testing is inspired by the idea of using machine learn-
ing to adapt the set of tests run to the Software Under Test (SUT): the
learning problem is to choose new inputs based on the behavior observed
on past inputs. Obviously, this problem is recognized and addressed by
all learning/search-based testing approaches: proposing a solution to this
problem defines the field! This problem is essentially equivalent to the core
problem in ML for verification — the application of machine learning to a
computational problem.

2. Second, in some cases, the learning techniques proposed may make assump-
tions that do not (quite) match the aims of software testing. In particular,
for reinforcement-learning (RL) [17] based techniques, the goal of maximiz-
ing total coverage can lead to formulations of reward that do not naturally
fit the usual RL assumptions.

3. Finally, programmers often want to experience the benefits of automated
test generation without completely abandoning part of their test effort to a
“black box” that is given, e.g., a set of method calls and input types, or a
numeric input range, and produces tests. Effective random testing tools for
complex system software, for example, are often highly engineered artifacts
with special-casing, test case filtering, human-designed feedback, and hand-
written specifications written in a standard programming language [18, 19].
In fact, random testing’s popularity among programmers (even among those

who might be more inclined to prove programs correct, such as Haskell users
[20]) is likely due to the combination of ease of use, effectiveness, and control
that it provides programmers. The “interface” to random testing’s core test-
generation approach is simply a method for producing a pseudo-random
number, which is provided as a standard library by all popular programming
languages. The gap between test programming and “normal” programming
in random testing essentially vanishes, and the only “tool” that must be
understood is, typically, a small set of API calls.

In this paper, we discuss our experiences with these three challenges, in the
context of one ML-based approach to software testing based on adaptation-
based programming (ABP) [21]. Rather than new technical contributions or
experimental results, the primary aim of this paper is to bring the second and
third challenges of ML-based testing to the attention of other researchers and
practitioners. We first briefly introduce ABP-based testing [12], then discuss
the problems of adapting testing to learning (Section 2), adapting learning to
testing (Section 3), and adapting test programming to programmers (Section 5),
primarily focusing on the latter two, less widely recognized, challenges.

1.1 Adaptation-Based Programming

Adaptation-based programming (ABP) [21, 22] is a novel approach to program-
ming that allows a programmer to exploit reinforcement learning (RL) [17] to
“implement” difficult algorithms. Rather than writing code to compute a value,
the programmer simply asks an ABP-library to “suggest” a value, given a con-
text (the context is the formulation of the current state of the system). The
programmer then rewards the ABP library based on how good the suggestion is.
The ABP-library uses a reinforcement learning algorithm to attempt to optimize
expected reward.

RL is an approach to the problem of learning controllers that maximize
expected reward in controllable stochastic transition systems. Such a system
can be imagined as a graph of control points with rewards possibly observed
on transitions. Each control node has an associated set of actions that influence
(perhaps only probabilistically) the transition taken. An optimum controller for
such a system is one that selects actions at all control points such that total
reward is maximized. Program-like structures annotated with control points are
isomorphic to Semi-Markov Decision Processes (SMDPs), widely used models
of controllable stochastic systems [23, 24]. The details of SMDP theory are not
essential to understand ABP: what is important is that there are well-known RL
algorithms for learning policies (action choices based on a context indicating the
control point) for SMDPs based on repeated interactions and rewards.

As an example, to program tic-tac-toe in ABP, a programmer would allow
the ABP library to suggest a move (e.g. a number 1-9 indicating a board po-
sition) based on the current board state (perhaps a string, e.g. ’X-XO-OO-X’),
and provide a positive reward if the move proposed resulted in a win (see Fig-
ure 1 for pseudo-code). Each game would constitute one “episode” of learning,

playGame():

ABP.beginEpisode();

while (!gameOver()) {
context = boardState();

move(ABP.suggest(boardState()));

if (victory())

ABP.reward();

opponentMove();

ABP.endEpisode()

Fig. 1. Pseudo-code for ABP-style Tic-Tac-Toe

since moves in previous games have no influence on reward for future games.
Initially, behavior of the ABP-based player would be essentially random. Over
time, however, the adaptive process (the library’s encapsulation of all it has
learned about the problem using RL) should improve its play; for a simple game
like tic-tac-toe this might only take a small number of iterations. A key point
is that the programmer need not be aware of the concept of SMDPs underlying
this adaptation to the reward function. The programmer only needs to be able
to generate a good description of the current state and a reasonable evaluation
of choices made.

The ABP library referred to in this paper, available for download on the web
[25], makes use of a popular reinforcement learning algorithm called SARSA(λ)
[17]. At the heart of SARSA(λ) is the notion of a Q value defined as follows:
at adaptive A, the Q value of context c and action a (QA(c, a)) is the expected
sum of rewards seen by executing a in c and following the optimal policy there-
after. Learning these Q values allows us to pick actions optimally since the best
action is simply the one with the largest Q value. The SARSA(λ) algorithm
learns Q values from experience. This is done by executing the learning algo-
rithm for a number of episodes during which it updates the Q values at every
(context, action) pair that is encountered. The algorithm follows an ε-greedy
explore-exploit policy which means that the best action is chosen (i.e. exploited)
with probability (1− ε) while an action is chosen randomly (i.e. explored) with
the remaining ε probability. The library uses a small (typical) value of 0.1 for ε.
Finally, the value of λ (∈ [0, 1]) controls the extent to which a particular action
is given credit for future rewards. A large value of λ updates an action’s Q value
with rewards that occur long after the action is taken whereas a small value of
λ only updates the Q value with rewards seen immediately after the action is
taken. Our ABP library sets λ to the moderately high value of 0.75, allowing
test coverage that only results from a complex combination of operations to be
effectively taken into account.

import abp.*;

. . .
public enum TestOp implements java.io.Serializable

INSERT,REMOVE,FIND;

public static final Set<TestOp> AllVals =

unmodifiableSet(EnumSet.allOf(TestOp.class));

. . .
AdaptiveProcess test = AdaptiveProcess.init();

HashSet<String> states = new HashSet<String>(); // Store all states visited

Adaptive<String,TestOp>opChoice =

test.initAdaptive(String.class,TestOp.class);

Adaptive<String,TestVal>valChoice =

test.initAdaptive(String.class,TestVal.class);

for (int i = 0; i < NUM ITERATIONS; i++) {
SUT = new SplayTree(); // Create an empty container at beginning of each test case

Oracle = new BinarySearchTree(); // Empty oracle container

String context = SUT.toString();

// The context/state is simply a linearization of the SplayTree

for (int j = 0; j < M; j++) {
TestOp o = opChoice.suggest(context, TestOp.AllVals);

// Used just like pseudo-random number generator

TestVal v = valChoice.suggest(context, TestVal.AllVals).ordinal();

Object r1, r2;

switch (o) {
case INSERT:

r1 = SUT.insert(v);

r2 = Oracle.insert(v);

break;

case REMOVE:

r1 = SUT.remove(v);

r2 = Oracle.remove(v);

break;

case FIND:

r1 = SUT.find(v);

r2 = Oracle.find(v);

break;

}
assert ((r1 == null && r2 == null) || r1.equals(r2)); // Behavior should match

context = SUT.toString(); // Update the context

if (!states.contains(context)) { // Is this a new state?

states.add(context);

test.reward(1000); // Good work, AdaptiveProcess test, you found a new state!

}
}
test.endEpisode();

}

Fig. 2. Adaptation-Based Programming: a Simple Example

1.2 ABP-Based Testing

The key insight of ABP-based testing is that a programmer can take a similar
approach to generating tests for a program with a clear API or other stateful
input-definition. Rather than selecting moves in a game, she lets the ABP li-
brary select methods to call and parameters for the selected method calls for
the program being tested (the SUT). In practice, the programmer essentially
writes a random testing harness, replacing calls to a pseudo-random number
generator with calls to the ABP library’s suggest method, using, e.g., a string
representation (via toString) of the SUT’s current state as a context. Each
test sequence (from container initialization until we begin a new test on a new
container) constitutes an episode. Figure 2 shows an example ABP test harness
for a SplayTree class, using a binary search tree (a simpler to implement library
with equivalent functionality) as an oracle. Notice that the ABP-based testing
harness is just a standard Java program, making calls to a library implemented
in Java. No special compilation or execution environment is involved; concep-
tually, the ABP library’s interface is only slightly more complex than that of
a typical pseudo-random number generator. Note that the use of methods with
a single integer parameter is simply an accident of the example; an Adaptive
(action variable) can be based on any finite type (though, as in pure random
testing, we might expect poor results when the size of the domain is too large).
The key question is now: what can the programmer reasonably use as a reward,
in order to “encourage” the adaptive process to thoroughly test the SplayTree
code?

The example provides a concrete clue to the general answer. After each test
step, the harness checks to see if the current SUT state has been previously
seen during testing. If not, it adds it to the set of visited states and rewards
the ABP library for exposing new behavior of the SUT. In other words, the pro-
grammer can provide rewards based on increases in test coverage. It is easy to
augment coverage instrumentation to not only record statement/branch/path
coverage, but to signal an appropriate reward for new coverage. This gives the
ABP’s adaptive process an optimization goal that the programmer can hope
will correlate with effective testing, with little additional complexity over that
required in computing coverage in the first place. Initially, in the absence of expe-
rience, ABP chooses randomly, effectively duplicating random testing. However,
after the adaptive process has observed a few rewards, the learned policy will,
with high probability (about 90% of the time), take the actions with maximum
predicted reward, and only choose randomly 10% of the time. This alternation
between exploiting what has been learned and exploring with random actions
ensures that testing is likely to improve over time but that exploration is never
abandoned.

Note that in some sense this approach to rewards is “abusing” the basis of RL:
the objective function is changing with each episode, in that the probabilities of
reward for certain actions in certain states is decreasing with time. The adaptive
process will only receive a reward for its first exploration of a new coverage
element, whether that element is a statement, a branch, a shape, a path, or a

predicate valuation. This approach to reward derives from typical methods for
evaluating software test suites: for any coverage metric, the “score” for a suite is
typically based on treating the suite as a “hitting set” for the coverage targets:
in typical usage, if suite A takes 100% of all program branches precisely once
each and suite B covers 90% of all branches, but takes each branch 10 times,
we simply say that suite A “has better branch coverage.” Even using a set of
coverages (including path, branch, and statement) as in our framework only
complicates this essential fact: repeated exploration is not considered valuable,
in and of itself. In the usual RL setting, e.g., game playing or planning, reaching
a goal in future episodes is just as good as reaching it the first time — e.g.,
there is no penalty for winning a game in the same state as in a previous game.
This property of rewards is known as stationarity. Experimental results [12]
indicate that this unusual reward structure does not prevent the ABP library
from learning a policy that, over time, improves test suite coverage. Informally,
we can think of this setting as playing a game against an opponent who never
“falls for” the same trick twice — but exploring strategies similar to those that
recently proved successful increases the chance of finding a new way to win.

Out experimental results indicate that ABP can be effective for testing, at
least for container classes and an HTML parser, even with no tuning of the RL
algorithm to the problem, and no programmer tuning of the contexts used or
reward structure beyond a naive combination of string linearizations and “off-
the-shelf” coverage metrics.

2 Adapting Testing to Learning

The previous section of this paper presents one approach to the problem of
adapting testing to learning. Many other approaches are possible, but all are
essentially applications of some learning or search algorithm to the problem
of test generation, and in this sense typical of much applied machine learning
research. The nature and importance of this problem is widely understood. We
do believe that one aspect of this problem (related to the generally difficult
problem of evaluating test suites) may merit further attention, but must delay
the discussion of this idea (in Section 4) until after we place it in the context of
adapting learning to testing.

3 Adapting Learning to Testing

ML-based testing has mostly applied off-the-shelf techniques to the problem of
software testing. While using ML as a “black-box” is a good start, it unfortu-
nately treats software testing as “just another domain.” This is in contrast to
much work in the ML community, where learning algorithms are often developed
to leverage the structure of a problem, particularly for those with significant ap-
plications. Such a learning algorithm can be expected to perform far better than
a more general one. The problem of testing software is of sufficient importance to
warrant a learning algorithm explicitly designed for it. Therefore, in this section,

we attempt to identify the specific characteristics of software testing, viewed as
a class of learning problems. We use the gained insight to propose extensions to
the existing ABP-based testing framework followed by sketching an outline of
RL algorithms that might be better suited for our purpose.

3.1 Assessment of ABP-based Software Testing

In section 1.2, we briefly described how the current use of the ABP system
violates one of the fundamental assumptions of the underlying RL algorithm,
namely, the stationarity of the reward signal. The assumption of stationarity
means that the expected reward we get for being in a particular context c does
not depend on how many times we have visited a context. However, this is clearly
violated in the software testing setting, where the reward for being in a context,
will typically decrease each time the context is re-visited. At the extreme, if a
context corresponds exactly to a program state, then the reward would often be
zero after the first visit, depending on the kind of coverage considered.

However, despite the non-stationarity, positive experimental results indicate
that the learner can still use the feedback to improve testing performance. In
order to understand this behavior, it is useful to note that each context c used in
software testing actually represents an entire class of program states. It appears
that this fact leads to a useful form of generalization that the ABP system
is able to exploit. In particular, if a context is visited for the first time and
results in a positive reward, then the ABP system will tend to estimate that
the context will have a positive reward in the future. This is a good assumption
when that context describes a set of unique but similar program states that will
each generate rewards on the first visit. In this situation, the ABP system will
tend to bias the exploration of the program executions toward such promising
contexts.

Qt+1(c, a) = Qt(c, a) + αz(rt) (1)

Of course, after visiting a context many times, we can expect that the posi-
tive rewards will become rare. Unfortunately, this is where the ABP system will
run into difficulty. The value estimates maintained by the ABP system, which
are used to select its actions, are averages of observed reward sequences (see
Equation 1). It can take significant time for this average to track the change
in reward for a context and in the meantime the ABP system will continually
explore the now exhausted context, wasting program executions. Eventually the
system will learn that the previously attractive contexts are exhausted and then
explore more promising areas. It is easy to imagine situations where this type of
behavior can lead an ABP-based system to perform worse than random testing.
In particular, this will happen when the early positive impact of ABP’s biased
exploration does not counteract the later inefficiencies resulting from slowly re-
alizing a context is no longer rewarding. In what follows, we propose a number
of simple extensions to the current ABP system that might allow it to better
leverage this insight.

3.2 Dealing with Non-Stationarity

One approach to dealing with non-stationarity is to use a more refined context.
For example, if we augment a given context with the counts of how many times
we’ve visited the context, then the reward signal will appear to be much more
stationary. However, there is a serious drawback to this “solution.” The number
of possible contexts would increase substantially and this would reduce the ABP
system’s ability to generalize, which was one of our main hypothesized reasons
for the ABP system’s current success. Thus, simply increasing the scope of the
context does not appear to address the fundamental issue.

Another approach would be to adjust the way that the system updates the
Q-values QA(c, a), which estimate the value of taking action a in context c for
adaptive A. Recall that these values are used to select an action to execute
in a given context. Currently, after each program trajectory, these values are
updated as a moving average of past rewards and the newly observed reward.
As mentioned above, this averaging process can be quite slow with respect to
realizing that a previously good Q-value is now bad. A solution would be to
place more weight on the newly observed rewards in the update equations. This is
certainly a reasonable engineering approach to the problem, that deserves further
investigation. However, there is no clear principle for selecting the particular
weighting scheme, which is likely to vary from problem to problem, leading to
robustness concerns.

A more principled approach would be to explicitly define a non-stationary
reward model that makes sense for software testing and to modify the RL algo-
rithms to take that model into account. In particular, this reward model should
encode the notion that subsequent visits to a newly discovered context are likely
to produce a reward pattern that tends to decrease toward. Working out the tech-
nical details of this approach is an interesting research problem and would sug-
gest new update mechanisms that would actively try to estimate non-stationary
changes and correct Q-value estimates accordingly.

The last observation raises an interesting question: Is learning online, as we
do here, the best way to apply RL to software testing? A fundamentally different
approach is training offline on a diverse set of programs which has the potential
of improving generalization between contexts. Furthermore, training offline pro-
duces a useful policy that can be applied off-the-shelf to testing a SUT which
is desirable since its performance can be carefully evaluated before deployment
and optimized for efficiency. This approach requires a carefully engineered con-
text encoding for an SUT (perhaps by ML experts) which seems feasible. For
instance, we may include features that compute counts of the number of new
states seen from a given (context, action) pair, number of visits since the last
reward was seen, and so on. It opens the door to using efficient feature vec-
tor representations which typically achieve better generalization compared to
the current tabular approach. If required, we may even have different contexts
corresponding to fundamental differences in search spaces.

3.3 Monte-Carlo Tree Search

The ABP approach has so far focused on controlling exploration by biasing
random walks according to continually adapting Q-value estimates. There are,
however, other approaches for exploration developed in the machine learning
(and more generally, the AI) field, that also deserve attention. One particularly
promising class of algorithms is known as Monte-Carlo Tree Search (MCTS)
[26], which has demonstrated tremendous success in recent years, most famously
for its major advances in computer Go [27]. In the context of software testing,
MCTS can be viewed as a way of building a tree of program executions in a
way that is biased toward more promising areas of the tree. Each iteration of
MCTS would correspond to selecting a program execution, where the actions
at adaptives are selected in a way that attempts to balance exploration with
exploitation of actions that look more promising based on past executions. One
of the key contributors to the recent success of MCTS is the use of modern rules
for managing this explore/exploit tradeoff in a theoretically rigorous way that
works well in practice.

MCTS seems well-suited for testing software since any good adaptive method
of testing software within a time budget should perform a careful exploration of
an unknown search space. It is easy to modify the existing ABP library so that
MCTS could be run under the hood rather than RL, with no noticeable difference
to the tester with respect to writing the adaptive test program. However, like
RL, MCTS also assumes the search problem involves stationary rewards. Thus,
an interesting research direction is to consider variants of MCTS that capture
its strengths while taking into account the non-stationary nature of the software
testing search problems. As for RL, there are a variety of starting points for
doing this, the most promising of which is to explicitly build a model of non-
stationary reward into an MCTS algorithm, which continually tries to estimate
the non-stationarity and account for that in its explore/exploit behavior.

4 Adapting Testing to Learning, Revisited

One mitigation of the problem of non-stationary reward is to abandon the typical
software testing evaluation of test suites as hitting sets. While re-visits of cov-
erage entities should almost certainly be de-valued according to some discount
function, considering one execution of a branch in a test suite to be just as ef-
fective for testing as multiple executions is not particularly intuitive. Certainly,
when evaluating randomly-generated suites in terms of fault detection, test en-
gineers prefer suites that detect a fault multiple times to suites that only detect
a fault once, on the grounds that the later method has a high probability of
not detecting the fault at all [28]. Model checking heuristics based on structural
coverage have used such a discounted (rather than binary) approach successfully
[29, 30]. Note that this approach, to our knowledge not applied in learning-based
approaches to date, only reduces the non-stationarity of the reward, rather than
completely removing it. We do not believe that considering a suite that executes

one branch 1,000 times “just as good as” a suite that executes 1,000 branches
once is wise, so some discount for revisits is clearly required.

5 Adapting Test Programming to Programmers

It seems rather obvious that a program can be tested only after it has been
written. This view can easily lead to the assumption that test cases for a program
also have to be created after it has been been written. This perspective leads
to a decoupling of testing from programming, which has the danger of making
testing seem more like an optional part, something that can be left out. In a
sense, this is the point of view taken by testing approaches that take as input
a program, its input structure, and possibly a specification, and output a set
of tests, whether this generation is based on machine learning or some other
technique.

That testing can be integrated well with programming has been impressively
demonstrated by the QuickCheck tool for Haskell [20]. QuickCheck provides an
easy way for a programmer to generate random values of almost any prede-
fined or user-defined type. The programmer implements tests by writing Haskell
functions that represent properties to be checked. These properties can then be
tested using the automatically generated data. The fact that tests for Haskell
code are written as Haskell functions as well as the fact that automatic test data
generation is also expressed within the program to be tested leads to a testing
system that is tightly integrated into the language that is to be tested.

Specifically, QuickCheck is a domain-specific language for testing. A domain-
specific language (DSL) offers notations and abstractions that are designed to
work in a specific application domain [31]. DSLs can be implemented in quite
different ways. Most importantly, we can distinguish between external and in-
ternal DSLs. An external DSL is implemented as a stand-alone product, which
means that it has complete control over the syntax of the DSL, which is one of
the major advantages of external DSLs. On the other hand, the implementation
of an external DSL is usually quite complex and often difficult to adapt. In con-
trast, an internal DSL is implemented as an extension of an existing language
(called the host language) and uses constructs of the host language as part of
its syntax. Internal DSLs are also called domain-specific embedded languages
(DSELs) [32]. DSELs are easier to implement and adapt since they can reuse
much of the infrastructure of the host language. For example, all functionality
for arithmetic or string processing is immediately available whereas these have
to be reimplemented in an external DSL. QuickCheck is a DSEL in Haskell and
it depends crucially on the fact that it has direct access to Haskell code. It
is hard to imagine a version of QuickCheck implemented as an external DSL,
which would essentially have to re-implement a significant part of, if not all of,
the Haskell language.

We find ourselves in a quite similar situation for ABP. While QuickCheck is
a tool for deriving properties of a program, ABP is a tool for changing programs.
It is in a sense a metaprogramming tool. But much like QuickCheck, ABP needs

access to the program it is supposed to adapt — which is precisely what the
Java ABP library provides, a language embedded in Java that offers constructs
to produce adaptive Java programs.

The combination of ABP with testing further leverages the integration into
the host language and makes it possible to base the adaptation process of test
cases on information obtained directly from the program to be tested during
the testing process itself. In particular, in contrast to test-generation approaches
that operate as external tools, ABP-based testing can “talk to” the program
being tested (and its host language) with great ease, letting programmers assert
as much or as little control over the testing process as with random testing. This
gives programmer some extremely useful abilities:

– A context in ABP can be anything that can be computed by the SUT or by
auxiliary functions in the host language. In our container class experiments,
“system state” was produced by simply calling toString, abstracting the
result with a simple string-processing function written in Java, and merging
in some single-test coverage results.

– The reward in ABP can, again, be computed by arbitrary code. It can make
complex context-sensitive evaluations of test fitness easy by directly inspect-
ing system state. There is no need to express desirable properties of the
system’s behavior in any language other than that of the implementation
itself.

– Similarly, if programmers wish to introduce new coverage metrics that gener-
alize to more than one program, they can program these instrumentations in
Java itself, making use of reflection. Our own implementation uses automatic
instrumentation to compute path coverage based on Java-coded branch and
statement coverage provided by CodeCover [33].

– A programmer can “override” ABP when needed — if certain behaviors in
rare states are known to lead to known faults, for example, a hand-coded
choice function can be used in place of the ABP suggestion.

– Contracts/properties can be implemented directly in SUT terms, without
the need to learn a new property language.

– ABP-based testing, as noted before, “looks like” simple random testing (or
generalized unit testing) to a large extent, and does not require a programmer
to leave the “comfort of home” by changing languages or running an external
tool.

In a sense, ABP-based testing has some similarities to the approach to check-
ing C code introduced in version 4.0 of the SPIN model checker [34, 35]. The
ability to directly call C code, check properties, and bias model checking ex-
ploration based on C-language constructs made it much easier to model check
large, complex C programs in SPIN [36, 37]. C served as a “DSEL” for SPIN’s
PROMELA language; in our case, we are similarly describing a search problem,
with the added advantage of not requiring programmers to switch between two
languages (SPIN and PROMELA): testing and tested code are both written in
Java, and have the same language of discourse.

In short, the realization of ABP as a DSEL is crucial in feeding test-relevant
program information into the adaptation process, and it is this language design
decision which contributes significantly to the style of ABP-based testing that
makes it into an interesting new opportunity for programmers.

6 Conclusions

While the use of machine learning (and related AI approaches) in testing has
already proved fruitful, we believe that the full potential of this combination can
only be reached when research efforts move beyond formulating testing problems
as machine learning problems to consider two additional aspects that distinguish
learning-based test generation from the use of machine learning in model check-
ing:

– First, while off-the-shelf ML/AI approaches may work well for testing, many
of the most effective uses of ML involve leveraging the structure of a unique
problem domain with new machine learning algorithms specially suited for
the nature of the problem at hand.

– Second, the adaptation of learning-based testing by users outside the research
community may be greatly speeded by placing test generation in a context
that such users already understand: namely, the language in which they
are developing the Software Under Test. Such an approach not only makes
using ML to produce tests more appealing to programmers; it also gives test
generation systems access to programmer knowledge and the full power of
the implementation language, which may improve the quality of the tests
generated.

In particular, the second point brings us to the title of this paper. We have
come to believe that it may be fruitful to think of learning-based test generation
not so much as “generation” which implies a completely automatic process with-
out human control but as test programming where a human test engineer/domain
expert makes use of algorithmic techniques to ease the task of programming a
highly effective method for generating tests. ABP systems (in conjunction with
automated coverage tools) can in this light be seen simply as libraries, albeit
more sophisticated and powerful than most, for helping programmers write pro-
grams to accomplish their tasks. It may be possible to (mostly) remove the
human programmer from testing; we do not know if it is altogether wise.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75 (1987) 87–106

2. Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.: Learning assumptions for com-
positional verification. In: Tools and Algorithms for the Construction and Analysis
of Systems. (2003) 331–346

3. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Tools and
Algorithms for the Construction and Analysis of Systems. (2002) 357–370

4. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE. (1999)
225–240

5. Brady, B., Bryant, R.E., Seshia, S.A.: Learning conditional abstractions. In: Pro-
ceedings of the IEEE International Conference on Formal Methods in Computer-
Aided Design (FMCAD). (October 2011) 116–124

6. Gupta, A., Clarke, E.M.: Reconsidering CEGAR: Learning good abstractions with-
out refinement. In: International Conference on Computer Design. (2005) 591–598

7. Chaki, S., Clarke, E.M., Groce, A., Strichman, O.: Predicate abstraction with mini-
mum predicates. In: Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. (2003) 19–34

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer-Aided Verification. (2000) 154–169

9. McMinn, P.: Search-based software test data generation: A survey. Software test-
ing, verification, and reliability 14 (2004) 105–156

10. Andrews, J., Li, F., Menzies, T.: Nighthawk: A two-level genetic-random unit test
data generator. In: Automated Software Engineering. (2007) 144–153

11. Veanes, M., Roy, P., Campbell, C.: Online testing with reinforcement learning. In:
Formal Approaches to Software Testing and Runtime Verification. (2006) 240–253

12. Groce, A.: Coverage rewarded: Test input generation via adaptation-based pro-
gramming. In: IEEE/ACM International Conference on Automated Software En-
gineering. (2011) 380–383

13. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineering
19 (1993) 774–787

14. Frankl, P.G., Iakounenko, O.: Further empirical studies of test effectiveness. In:
International Symposium on Foundations of Software Engineering. (1998) 153–162

15. Lyu, M.R., Huang, Z., Sze, S.K.S., Cai, X.: An empirical study on testing and
fault tolerance for software reliability engineering. In: International Symposium
on Software Reliability Engineering. (2003) 119–126

16. Cai, X., Lyu, M.R.: The effect of code coverage on fault detection under different
testing profiles. In: International Workshop on Advances in Model-Based Testing.
(2005) 1–7

17. Sutton, R., Barto, A.: Reinforcement Learning: an Introduction. MIT Press (1998)
18. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude to

formal verification. In: International Conference on Software Engineering. (2007)
621–631

19. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Programming Language Design and Implementation. (2011) 283–294

20. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: International Conference on Functional Programming. (2000)
268–279

21. Bauer, T., Erwig, M., Fern, A., Pinto, J.: Adaptation-based programming in Java.
In: ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
(2011) 81–90

22. Pinto, J., Fern, A., Bauer, T., Erwig, M.: Robust learning for adaptive programs by
leveraging program structure. In: International Conference on Machine Learning
and Applications. (2010) 943–948

23. Andre, D., Russel, S.: State abstraction for programmable reinforcement learning
agents. In: National Conference on Artificial Intelligence. (2002)

24. Mahadevan, S.: Agent reward reinforcement learning: Foundations, algorithms,
and empirical results. Machine Learning 22(1) (1996) 159–195

25. Fern, A., Pinto, J., Bauer, T.: Adapatation-based programming library in Java.
http://groups.engr.oregonstate.edu/abp/

26. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI
in Games 4(1) (2012) 1–43

27. Gelly, S., Silver, D.: Achieving master level play in 9× 9 computer go. In: Pro-
ceedings of the AAAI on Artificial Intelligence. (2008) 1537–1540

28. Andrews, J.H., Groce, A., Weston, M., Xu, R.G.: Random test run length and
effectiveness. In: Automated Software Engineering. (2008) 19–28

29. Groce, A., Visser, W.: Model checking Java programs using structural heuristics.
In: International Symposium on Software Testing and Analysis. (2002) 12–21

30. Groce, A., Visser, W.: Heuristics for model checking Java programs. Software
Tools for Technology Transfer 6(4) (2004) 260–276

31. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
32. Hudak, P.: Building Domain-Specific Embedded Languages. ACM Computing

Surveys 28(4es) (1996) 196–196
33. : Codecover - an open-source glass-box testing tool. http://codecover.org/
34. Holzmann, G., Joshi, R.: Model-driven software verification. In: SPIN Workshop

on Model Checking of Software. (2004) 76–91
35. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional (2003)
36. Groce, A., Holzmann, G., Joshi, R., Xu, R.G.: Putting flight software through

the paces with testing, model checking, and constraint-solving. In: International
Workshop on Constraints in Formal Verification. (2008) 1–15

37. Holzmann, G., Joshi, R., Groce, A.: Model driven code checking. Automated
Software Engineering 15(3-4) (2008) 283–297

