
Achieving Quality of Service with Adaptation-based
Programming for Medium Access Protocols

Pingan Zhu, Jervis Pinto, Thinh Nguyen, Alan Fern
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, Oregon, USA 97331
Email: {zhup,pinto,thinh,afern}@eecs.oregonstate.edu

Abstract—Designing network protocols that work well under
a variety of network conditions typically involves a large amount
of manual tuning and guesswork, particularly when choosing
dynamic update strategies for numeric parameters. The situation
is made more complex by adding the Quality of Service (QoS)
requirements to a network protocol. A fundamentally different
approach for designing protocols is via Reinforcement Learning
(RL) algorithms which allow protocols to be automatically
optimized through network simulation. Unfortunately, getting
RL to work well in practice requires considerable expertise
and carries a significant implementation overhead. To help
overcome this challenge, recent work has developed the pro-
gramming paradigm of Adaptation-Based Programming (ABP),
which allows programmers who are not RL-experts to write
self-optimizing “adaptive programs”. In this work, we study the
potential of applying ABP to the problem of designing network
protocols via simulation. We demonstrate the flexibility of our
design method via a number of case studies, each of which
investigates the performance of an adaptive program written for
the backoff mechanism of the MAC layer in the 802.11 standard.
Our results show that the learned protocols typically outperform
802.11 on a number of evaluation metrics and network conditions.

I. INTRODUCTION

The design of network protocols is a complicated and
often tedious endeavor. Consider, for example, the process
of designing a MAC layer protocol for the popular 802.11
standard. Typically, a number of high-level design decisions
are made (e.g. conditions for backoff steps) after which,
a number of numeric parameters (e.g. backoff factors) are
individually tuned for good (average) performance under a
variety of network conditions. While the high-level designs
are often theoretically well-motivated, the possible design
space is vast and it is quite plausible that better protocols
exist. Furthermore, the parameter tuning is extremely tedious
which complicates an iterative design of the protocol since the
smallest change to the protocol has to be followed by a search
for the optimal parameter values.

Clearly, the designer is being forced to fully specify a solu-
tion to the complex problem of protocol design in the presence
of considerable uncertainty. This method is one extreme of
the programming paradigm spectrum. At the other extreme lie
Reinforcement Learning (RL) techniques which ask very little
of the programmer besides the problem specification and the
objective function. Unfortunately, getting such RL programs
to work well in practice is often very challenging, requiring
considerable expertise and implementation overhead.

Adaptation-Based Programming (ABP) is a novel program-
ming paradigm, which attempts to bridge these two extremes.
ABP integrates RL into a modern programming language and
is intended for users who are not experts in RL. It allows
“adaptive” programs to be written in which certain decisions
may be left “open” via adaptive objects. The programmer
only needs to specify the information relevant to the decision
and the set of candidate actions along with a performance
objective given via reward statements which is used by the
underlying learning system to learn a policy at each of the
decision points. Importantly, the use of ABP adds practically
no implementation overhead compared to writing a standard
non-adaptive program.

The integration of a nearly unrestricted programming ability
with modern RL algorithms makes for a promising new
approach to the problem of network protocol design. The
primary benefit is that the ABP system places little to no
restrictions on the program unlike current RL libraries. In fact,
an ABP program can be written in any situation where a Java
program might be written. The programmer is free to specify
as much of the program as she wants which allows her to
focus on high-level decisions and leave the rest to the learning
system. More generally, it allows the designer to only specify
those parts of the protocol where the “best” action is intuitively
clear and leave the rest unspecified.

To make the applicability of ABP more concrete, consider
the problem of designing a “new” backoff mechanism in the
MAC layer of 802.11. The current method uses a single bit
of information as context: Whether the last attempted packet
transmission at a node resulted in a collision or not. The set
of actions are to double the current contention window after
observing a collision or to reset to the minimum value of
CWmin after a successful transmission. While this method is
very simple and uses only a single bit for context, it is unclear
if we might be able to do better by increasing the context
or set of actions. As we will soon show, it is almost trivial
to replace the above procedure with a single adaptive that
uses the same context and action set. Modifying the context
or the set of actions is also simple, making it very easy to
hand-tune the protocol should the designer wish to do so. The
other major advantage of using the ABP system is that it is
very easy to specify any desired optimization objective (e.g.
average bandwidth, cumulative profit). It is far easier to specify
such an objective than it is to specify a protocol that will



effectively optimize the objective. ABP thus provides a way
of automatically optimizing a protocol for specific objectives
of interest with relative ease.

In this paper, we illustrate the utility of ABP through several
case studies. Our focus is on the uncertainty regarding the
best design for the backoff mechanism in standard 802.11
and enhanced 802.11e for QoS provisioning. Our results show
that the learned policies always do at least as well as the
802.11x and often outperform them. The rest of the paper
is organized as follows: In Section II, we review RL literature
and its relations to ABP. In Section III, we show examples of
adaptive program to optimize the backoff mechanism of the
standard 802.11. Section IV describes the network simulations
and the experimental setup followed by two case studies which
demonstrate the potential of combining learning with existing
knowledge and hand-tuning. We discuss the related work in
Section V and conclude with a discussion and future work.

II. REINFORCEMENT LEARNING AND
ADAPTATION-BASED PROGRAMMING

Reinforcement Learning (RL). The problem of rein-
forcement learning is typically formalized in the sequential
decision-making framework of Markov Decision Processes
(MDPs). An MDP consists of a state space, a set of actions,
a stochastic transition function, and a reward function. The
transition function specifies the probability of transitioning
to a particular next state after taking a particular action in
the current state. The reward function specifies a real-valued
reward for each state of the system, indicating the desirability
of being in the state. A typical objective is to find an action
selection policy, mapping states to actions, that maximizes the
average total reward acquired while executing the policy in
the MDP. RL is the problem of optimizing such a policy
without being given knowledge of the MDP transition or
reward function. Rather an RL algorithm must interact with
the MDP in order to find an optimal policy via intelligent trial
and error. There is a large body of work on RL [1], [2] and it
has also been successfully applied to a variety of networking
problems, e.g. [3], [4], [5], [6], [7], [8].

While many RL algorithms come with theoretical guaran-
tees (e.g. convergence in the limit, or finite-time approximation
guarantees), the successful application of RL to real-world
problems is still somewhat of an art that requires significant
experience and effort in selecting a learning algorithm, for-
mulating the problem as RL, implementing the algorithm and
connecting it to the application environment. While there are
a number of RL libraries [9], [10] that simplify experimenting
with RL, the libraries are primarily designed for use by
RL researchers to ease the evaluation and comparison of
algorithms.

Adaptation-Based Programming (ABP). ABP is a novel
programming paradigm [11], [12] that aims to lower the bar for
successfully applying RL algorithms to real-world problems.
ABP incorporates RL into a modern programming language,
Java in this paper, and is intended for programmers with
little to no RL experience. ABP allows the user to write

“adaptive programs”, which are simply standard programs that
are allowed to contain open decision points, which reflect the
programmer’s uncertainty about what the best action is at that
point. As illustrated in the next section, open decision points
are included in an adaptive Java program via the adaptive
construct (Java object) which can be used at such points
to “suggest” an action according to some underlying policy
which must be learned through experience. Thus, instead of
forcing the programmer to guess the correct program action
to be taken at such a point, ABP allows the programmer to
be agnostic, with the idea that the program will automatically
optimize those choices.

To facilitate such optimization, the programmer must spec-
ify the objective that should be optimized by the program,
e.g. attained bandwidth. This is done in ABP via the use of
“reward” statements which may be placed anywhere in the pro-
gram. During the program execution, each reward statement
provides the ABP system with a positive or negative numeric
reward, indicating the “goodness” of the program execution.
For example, a positive reward might be provided for each
successfully transmitted packet. The learning objective of the
ABP system is for the adaptive objects to learn to make deci-
sions so that the expected total reward over program executions
is maximized. The learning is done via RL algorithms that run
behind the scenes during program executions. For example, the
ABP system used in this work is based on policy-gradient RL
algorithms (see [12]), the details of which are not important to
this paper. Importantly, the programmer need not understand
the learning mechanism, but is only responsible for specifying
appropriate decision points and rewards. See [11] for a detailed
description of the constructs and semantics of the Java ABP
system used here while [12] describes the learning algorithm
employed. We now give examples of adaptive programs for
network protocol design, which will be used later in our
experimental investigation.

III. EXAMPLE ADAPTIVE PROGRAMS

The adaptive programs used in this work are based on
the backoff mechanism in standard 802.11 protocol shown
in Figure 1 as a non-adaptive program. This program is
executed after every node attempts to send a packet. The only
decision point is the action of adjusting window size after a
transmission. If the previous transmission is a collision, it will
double the contention window(CW) size; otherwise resetting
CW to the minimum value.

Fig. 1. Code snippet for standard 802.11 backoff mechanism

We start with the original 802.11 backoff mechanism shown
in Figure 1 as a standard non-adaptive program. This mecha-
nism is executed at any node that has just attempted to send



a packet. The only decision point is how to adjust the current
size of the contention window (cw) under various network
conditions. While there are many possibilities for such a design
space, 802.11 uses a simple approach of doubling the window
when there is a collision, otherwise resetting it.

Notice that the 802.11 backoff program can be viewed as
looking at a context, here whether there was a collision or
not, and then selecting between two actions depending on the
value of the context. This is exactly the behavior of adaptive
objects in ABP. Each adaptive object is provided with a context
when making a decision and returns one of a specified set of
actions. Figure 2 shows our simplest adaptive program, which
corresponds as closely as possible to standard 802.11. The
first line provides the program with a reward that is equal to
the difference between the newly successfully sent packets (at
most one) and the number of packets that were dropped from
the packet queue since the node’s last attempted transmission.
Note that this code and hence reward statement is executed
after each attempted transmission. Thus, the cumulative reward
is more positive if there are many successes and few drops.
The next two lines set the context to be used by an adaptive
for decision making and the actions available to the adaptive.
In this case, the context is simply equal to h0, a bit indicating
whether there was a collision or not, which is the same context
used by 802.11. The actions are also the same as for 802.11.
Next is the call to the adaptive’s suggest which may return
one of the two actions, RESET or MUL_BY_TWO. This choice
will depend on the context and the mapping from context to
actions is what should be learned by the adaptive program.

Fig. 2. Basic adaptive program with the same policy space as 802.11.

How might 802.11 perform if we allowed it to consider
more information when making a decision i.e. consider a
larger context? What if we consider selecting from a larger
set of actions rather than just doubling or resetting? While in
concept it is clear that these are likely to lead to an improved
protocol, it is very unclear how to define the function that
selects among actions based on the complex context. This is
the type of decision that we would like to leave open to be
automatically optimized. Figure 3 shows an adaptive program
which has more context and a larger set of candidate actions to
choose from. The context contains information that intuitively,
could be relevant to the adaptive’s choice. For instance, using
more collision history bits and the arrival rate of the node
seems relevant to making a good decision. Note that it is
not necessarily the case that all of the context is relevant for

making the decision, but the programmer need not worry about
that. It is the job of the ABP learning system to uncover
the relevance of parts of the context for decision making.
Similarly, it is unclear whether the two new actions under
consideration (halve the window, leave unchanged) will be
useful, but it is conceivable and left for the ABP learning
system to decide. By making these small changes to the
adaptive program, a much wider space of possible protocols
will be considered by the learning system. As our experiments
will show, this can lead to considerably improved performance
with no further effort from the programmer.

Fig. 3. Extended adaptive program with a larger policy space.

IV. SIMULATION STUDY

A. Environmental Setup

To gain fundamental insights into the behaviors of the
network protocols produced by adaptive programs, we choose
to restrict our experiments to a few simple but important
simulation settings. Specifically, we study the performance of
ABP-based MAC protocols in a single-hop 802.11x network
consisting of N wireless terminals or users. All users are
in proximity and a transmission from one user will interfere
with all others. In addition, we consider scenarios in which
upstream traffic are dominant, i.e., users send data more than
they receive. This scenario is important for the evaluation of
MAC protocols since typical wireless MAC protocols depend
critically on the channel contention mechanism when a user
tries to access the wireless medium to send its data. Moreover,
we focus on a single point of uncertainty in the MAC layer
and restrict our simulation to that of the MAC layer alone. All
simulations are performed using a time-slot accurate simulator
similar to the wireless module in NS-2 [13].

Training adaptive programs: Each adaptive program is
trained separately on both of the above scenarios as follows:
The adaptive program is allowed to learn on a newly initialized
simulation for a duration of 60 seconds, after which we reset
the simulator and restart. In order to evaluate the learning
mechanism, after every 100 episodes we turn off the learning
algorithm and evaluate the protocol for certain performance
metrics. After learning for 50,000 episodes, we pick up the
best performed policy in terms of accumulated reward to
proceed evaluation. Since the ABP system uses randomization



Packet Size 12000 bits
SLOT-TIME 20µs
DIFS 50 µs
CWmin 31
CWmax 1023
Channel Bit Rate 11Mbps
Maximum Queue Length 100

TABLE I
SIMULATOR PARAMETERS ADAPTED FROM 802.11.

and the learning algorithm might get stuck in local minima,
we repeat the above procedure five times and report the best
learned protocol among all the runs.

Evaluating protocols: We evaluate a given protocol on a
given network scenario by simulating the network for 600
seconds. During the evaluation, the learning mechanism is
switched off. Therefore the adaptive deterministically picks
the action it thinks is best for a given context. To remove the
effects of randomization, we perform ten such evaluations and
report the mean and standard deviation of each metric.

B. Case Study 1: Standard 802.11

We simulate 20 users, each with its own packet queue with
packets arriving at a constant rate. Packets are dropped if a
maximum queue length is exceeded. This restriction on the
number of packets in a queue produces packet drops as a
feedback signal to the MAC protocol indicating that the rate
of packets generated by an application or by another upstream
node in an ad-hoc network exceeds the current sending rate.
A well-designed MAC protocol ought to be able to use this
information to adapt its sending rate effectively.

In order to simulate different traffic densities, we use three
different arrival rates. Two arrival rates are chosen to simulate
the extreme traffic density scenarios where all the queues
are mostly full (H) or mostly empty (L). The third arrival
rate is a moderate scenario (M) between these extremes. The
most basic version of the simulator assumes one of these
three arrival rates for every one of the 20 nodes. We call
this network model “balanced” (B) and combined with the
arrival rates, gives us three network variants {B-H, B-M, B-
L}. To better simulate scenarios where different types of traffic
are on the same network, we “unbalance” the network by
assigning arrival rates according to one of three schemes, each
containing a different mixture of arrival rates which leads to
the next three variants {U-H, U-M, U-L}. We use the system
parameters shown in Table II.

Actions, Context, and Reward. Since we eventually want
to use the protocol in a distributed manner, each node must
be able to compute its context locally (i.e. without any
communication between nodes or a centralized controller).
Specifically, we use the context composed as follows: a)
Five history bits which represent the status of the last five
transmissions with 1 for a collision and 0 for a successful
transmission. These features generalize the single history bit
used by standard 802.11. b) Estimated available bandwidth
which we coarsely quantize into three bins. c) Estimated

if(mostRecentPacketIsDropped) {
if(t-0 send attempt is successful)
return RESET

else {
if(t-4 send attempt is successful)
return RESET

}
}
else {
if(all five previous send attempts are successful and

estimated node bandwidth is moderate)
return RESET

}
return MUL_BY_TWO

Fig. 5. Decision tree representation of learned policy in the B-H scenario
of Case 1. Here t-0 refers to the most recent send attempt while t-4 refers
to the fifth previous send attempt.

arrival rate, also coarsely quantized into three bins. d) Packet
drop bit, whether the last arriving packet is dropped or not.

Note that all these contexts can be measured or estimated
at a node. For example, the estimated available bandwidth can
be estimated by the number of idle slots that a node observes
which ensures that a node’s policy can be implemented using
only local information. Now, depending on the context, one
of the following actions are taken by the protocol: RESET,
REMAIN, MUL-BY-TWO and DIVIDE-BY-TWO. For the
reward, we use the difference between number of successful
sent packets and collision packets.

The results of comparing the learned protocols with 802.11
are reported in Figure 4(a-d). In all cases, the adaptive pro-
gram learns a protocol that either outperforms the baseline
(on B-H, B-M) or does as well as the baseline for all the
metrics. In particular, on the B-H and B-M cases, substantial
improvements in bandwidth, dropped packets and the collision
ratio are observed. An inspection of the learned policies shows
that they are optimized for the particular network scenario they
were trained on, as expected. For instance, in the B-H scenario,
most of the queues are typically close to full. In this scenario,
immediately resetting the contention window back to the small
value of CW MIN after a single successful transmission is
intuitively bad since it increases the probability of a collision
at the next send attempt. We can summarize the behavior of
the learned protocol via a decision tree shown in Figure 5. If
we prune the decision tree down to a single bit of information,
the most informative bit appears to be whether the last packet
is dropped or not; with the protocol choosing to reset upon
observing a dropped packet, otherwise doubling the contention
window.

For the B-M scenario, the decision tree representation of
the policy is quite complex and cannot be represented in the
simple form above. However, pruning the tree reveals the most
informative features to be the five send attempt history bits
and the estimated node bandwidth. Unsurprisingly, the drop
feature is no longer relevant since the node queues are rarely
full. On this scenario, as Figure 4(d) shows, standard 802.11
drops four orders of magnitude more packets than the best
learned protocol, which drops practically none.

As the traffic densities decrease, a large number of node



a) Case 1 - Reward b) Case 1 - Bandwidth

c) Case 1 - Collision Ratio d) Case 1 - Packet Drops
Fig. 4. (a-d) shows the comparison of performance metrics of the best learned protocol vs. standard 802.11.

queues are empty and the learned protocols keep the node con-
tention windows very small which explains the close similarity
in performance between the learned protocols and the baseline.
Initially, we expected to see large improvements in the U-H
and U-M scenarios. A closer inspection revealed that only
a small number of nodes have packets arriving too quickly,
making packet drops unavoidable. In these scenarios, the
learned protocol simply sets each node’s contention window to
the smallest value possible which seems to be the right thing
to do as demonstrated by the near-zero collision ratio. The
lower number of collisions and the fewer number of sending
nodes allows the learned protocol (and 802.11) to transmit
very efficiently.

An obvious shortcoming of our training mechanism is that
the learned policies might not generalize well to previously
unseen or rapidly changing network conditions. However, our
objective here is to investigate if we can use ABP to discover
better protocols for specific network conditions and our train-
ing mechanism is validated by the observed improvements in
performance and efficiency. Furthermore, this approach is far
from unreasonable. For instance, one might envision a two-
step learning procedure where in step one, we separately learn
a suite of protocols on a number of network “classes” as done
here and in step two, we train another adaptive to learn when
to switch between the protocols in the suite. In summary, the
simple adaptive program used here is an incremental change
to the existing protocol and is still able to achieve significant
improvements in performance (i.e. higher bandwidth, fewer
dropped packets) and efficiency (i.e. lower collision ratio).

C. Case Study 2: 802.11e Adaptive Program with QoS Model

In this case study, we examine the utility of using ABP to
design network protocols with QoS requirements. The main
idea is to incorporate the QoS requirements into the reward

SLOT-TIME 20µs
DIFS 50µs
Channel Bit Rate 11Mbps
Maximum Queue Length 100
CWmin Voice 7
CWmax Voice 15
CWmin Video 15
CWmax Video 31
CWmin Data 31
CWmax Data 1023
MAX TXOP Voice 1.5ms
MAX TXOP Video 3ms

TABLE II
SIMULATOR PARAMETERS ADAPTED FROM THE 802.11E STANDARD.

function and adaptive contexts. To simplify the setup, in this
simulation, we consider a three-node wireless network. Each
node is assumed to generate a different type of traffic in
order to model three representative classes of applications:
voice-IP applications with stringent delay but small throughput
requirement, video streaming applications with moderate delay
and good throughput requirement, and web-browsing/FTP
with less stringent requirements on both delay and bandwidth.
Specifically, we use the MPEG-2 trace in [14] to model the
traffic generated by the video streaming node. This video trace
has an average bandwidth of 3 Mpbs and the TXOP is set to
3 ms. For the voice-IP node, we use a 20 kbps Poisson traffic
with TXOP set to 1.5.ms. For the FTP node, we use a Poisson
model with a fixed rate within an experiment but vary them
from 3 Mpbs to 8 Mbps for different experiments. We use
FIFO queuing policy with drop tail policy for all the queues
at different nodes, i.e., a newly arrival packet is dropped if the
queue is full. The list of simulation parameters for this case
study are shown in Table II.

We note that standard 802.11e gives voice and video traffic



a relatively high priority compared to regular traffic by setting
CWmax and CWmin to small values. Specifically, CWmax
for voice and video traffic are 15 and 31, respectively, while
CWmax for regular data traffic can be up to 1023. Also, the
bandwidth is set at 11 Mbps which is substantially lower than
the current technology. However, this is only a scaling factor,
and should not significantly affect the relative performance
between ABP and 802.11e.

Actions, Context, and Reward. The action set is the
same as Case 1. We use the following context which is
again restricted to be locally computable. a) History bits,
representing the status of the last five transmissions with 1 for
a collision and 0 for a successful transmission. b) Estimated
available bandwidth, coarsely quantized into three bins. c)
Estimated arrival rate, again quantized into three bins. d)
Packet drop bit corresponding to whether the last arriving
packet is dropped or not. e) bits indicating type of traffic
and throughput requirement: IP-telephone, video streaming,
or data with corresponding throughput requirements for voice
(20 kbps), video (3 Mbps), and data (none).

We implement the following ABP reward. Every node
estimates its goodput at every 0.1 seconds. For voice and video
traffic, it is important that their packets arrive on time and
the overall throughput satisfy the requirements. As such for
voice and video traffic, if the estimated throughput of video
or voice traffic in a period of 0.1 second lies in the 5% range
of the requirements, no penalty will be given. Otherwise, we
give -1 for that period of time. Also, for the data traffic, if
the estimated throughput in a certain period is better than the
previous period, we give +1 to as a reward.

There are many metrics for comparing standard 802.11e
with ABP. For example, one can compare the average video
throughput, or voice throughput, or average throughput of all
traffic produced by 802.11e and ABP. However, this is a vector
comparison and there might not be an absolute vector that is
better than all others. On the other hand, it is reasonable to say
one protocol is better than other if, for both protocols, voice
and video traffic satisfy the specified throughput requirements
while the data throughput of the better protocol is larger
than the other. In fact, the protocol learned by ABP is better
than 802.11e in this sense. Fig. 6(a) shows that the average
throughput for data traffic using ABP is consistently larger
than that using the 802.11e protocol for different data traffic
densities ranging from 5 to 8 Mbps. Fig. 6(b) shows the
collision ratio for data traffic as a function of data traffic
density. As seen, there are more collisions for ABP when
the data traffic density increases. This is an acceptable trade-
off to increase the overall throughput. Note that most of the
collisions happen with data traffic, and rarely interfere with
the voice and video traffic. On the other hand, Fig. 6(c) shows
the number of packet drops due to overbuffering at the data
queue is much more for 802.11e than that of ABP. This occurs
as ABP tries to send out packets faster at the expense of
increased collision but reducing the number of packet drops.
Fig. 6(d) show all video, voice and data throughput for ABP.
An important observation here is that the voice and video

traffic are satisfied the specified throughput requirements as
they vary very little around 20 kbps and 3 Mbps.

V. RELATED WORK

While our ABP framework for designing network protocols
is novel, tools and methodologies for designing network
protocols have been well explored. Under certain restricted
assumptions about the network conditions, it is often that
theoretical analysis alone is sufficient to yield well-designed
protocols in practice [15]. On the other hand, it is often
difficult to develop precise theoretical analysis for many real-
world scenarios in which many simplistic assumptions about
the networks no longer hold. In this case, network protocol
designers often rely on simulations to validate the performance
of their theoretically or intuitively motivated protocols. As
such, many network simulators have been developed to aid
the designers. The most predominant simulator is NS-2 [13],
which allows the designers to write their protocols in high-
level Tcl/Tk scripts. However, unlike our ABP framework,
NS-2 is incapable of automatically suggesting good policies
using the designer’s hints. JavaSim [16] is also another popular
network simulators capable of performing both coarse and
fine-grain simulations to allow for trade-off in accuracy and
simulation time. Like NS-2, Javasim is another “unintelligent”
network simulator. Interested readers may refer to [17] for a
list of network simulation tools.

There have been many previous attempts at ABP [18], [19],
[20]. Of these the ALISP [19], [20] is the most similar to
the Java ABP system used in this paper. ALISP integrates
choice points (similar to adaptives) into the LISP language.
However, the system is intended for RL experts and constraints
the programmer who must write the program in a certain
way. ALISP relies on the notion of an external world (MDP)
that provides rewards and the accompanying MDP theory
is hard for typical programmers to understand. The ABP
system used in this paper has been designed explicitly for
such programmers and is applicable wherever a standard Java
program can be written.

ABP systems are often confused for a RL library [9],
[10]. However, such libraries are designed to simplify the
experimentation with and comparison between RL algorithms
and demand considerable RL knowledge which limits their
usability. To the best of our knowledge, the ABP system
used here is the only system of its kind which allows non-
RL experts to easily apply modern RL algorithms to their
programs.

VI. DISCUSSION AND FUTURE WORK

This paper has introduced the framework of adaptation-
based programming for network protocol design. The frame-
work is appropriate whenever a protocol designer can specify
the objective to be optimized but has uncertainty about how
to build a completely specified protocol that optimizes it. The
ABP framework allows the designer to completely specify
parts of the protocol code that he is confident about, while
leaving other uncertain choices open for the ABP system



a) Throughput of data traffic b) Collision ratio of data traffic

c) Packet drops from data traffic d) Throughput of different traffic types
Fig. 6. (a-d) shows the comparison of performance metrics of the best learned protocol vs. standard 802.11e.

to automatically optimize. Our case studies investigated the
application of ABP to extending the 802.11 backoff mech-
anism in various ways. The results show that the learned
protocols are able to outperform the standard 802.11 and
802.11e mechanisms on a variety of performance metrics.

In future work, we plan to apply the ABP approach to
more complex protocols, where multiple choice points can be
optimized. We also plan to fully integrate the system with
standard network simulators. In addition, we plan to consider
the problem of online optimization of adaptive programs in the
context of network. In this work, the protocol was designed
by running the adaptive program in a simulator during the
learning phase. The resulting learned protocol would then be
executed on a real network without further adaptation. There
is clear utility in allowing adaptation during real execution in
response to changing network conditions, that may not have
been reflected in simulation. However, such adaptation must
be carefully controlled to ensure stability and fast adaptation
to changes. Understanding sound methods for doing this is an
important open problem.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 2000.

[3] M. Littman and J. Boyan, “A distributed reinforcement learning scheme
for network routing,” in tech. report CMU-CS-93-165, Robotics Institute,
Carnegie Mellon University, 1993.

[4] N. Tao, J. Baxter, and L. Weaver, “A multi-agent, policy-gradient
approach to network routing,” in ICML, 2001.

[5] B. Awerbuch, D. Holmer, and H. Rubens, “Provably secure competi-
tive routing against proactive byzantine adversaries via reinforcement
learning,” in http://www.cnds.jhu.edu /research /networks /archipelago
/publications /LearningByzantineRouting-TechnicalReport.pdf, 2003.

[6] Y. Chang, T. Ho, and L. Kaelbling, “All learning is local: Multi-agent
learning in global reward games,” in NIPS, 2004.

[7] ——, “Mobilized ad-hoc networks: A reinforcement learning approach,”
in International Conference on Autonomic Computing, 2004.

[8] S. Dejmal, A. Fern, and T. Nguyen, “Reinforcement learning for
vulnerability assessment in peer-to-peer networks,” in IAAI, 2008.

[9] B. Tanner and A. White, “RL-Glue : Language-independent software
for reinforcement-learning experiments,” JMLR, vol. 10, pp. 2133–2136,
September 2009.

[10] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “PyBrain,” JMLR, vol. 2010, p. 4,
2010.

[11] T. Bauer, M. Erwig, A. Fern, and J. Pinto, “Adaptation-based program-
ming in java,” in PEPM, ser. PEPM ’11. ACM, 2011, pp. 81–90.

[12] J. Pinto, A. Fern, T. Bauer, and M. Erwig, “Improving policy gradient
estimates with influence information,” ACML, vol. 20, pp. 1–18, 2011.

[13] http://nsnam.isi.edu /nsnam /index.php /UserInformation. The official ns-
2 webpage.

[14] http://trace.eas.asu.edu/mpeg4/index.html. Trace files and statistics:
Mpeg-4 part 2 video trace library.

[15] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint
routing and rate control,” SIGCOMM Comput. Commun. Rev., vol. 35,
pp. 5–12, April 2005.

[16] http://omni.bus.ed.ac.uk /javasim /usermanual /usermanual.html. The
official javasim webpage.

[17] http://www1.cse.wustl.edu / jain /cse567-08 /ftp/simtools /index.html. A
survey of network simulation tools: Current status and future develop-
ments.

[18] C. Simpkins, S. Bhat, C. L. I. Jr., and M. Mateas, “Towards adaptive
programming: integrating reinforcement learning into a programming
language,” in OOPSLA, 2008, pp. 603–614.

[19] D. Andre and S. J. Russell, “Programmable reinforcement learning
agents,” in NIPS, 2000, pp. 1019–1025.

[20] ——, “State abstraction for programmable reinforcement learning
agents,” in AAAI, 2002, pp. 119–125.


